

Rosatom SMRs

2024

IMPRESSIVE PORTFOLIO OF SUCCESSFUL PROJECTS

110 RUSSIAN-DESIGNED NPP UNITS HAVE BEEN BUILT GLOBALLY

SECOND NUCLEAR UTILITY GLOBALLY

37 UNITS	in operation at 11 NPPs	Leningrad NPP RMBK & VVER Kola NPP VVER
including FNPP	FPU AKADEMIK LOMONOSOV	Kalinin NPP VVER Russian Federation
29.58 GWe	total installed capacity in 2023	Moscow Belovarsk NPP
19.9%	nuclear in Russian power generation mix in 2022	Smolensk NPP RBMK Kursk NPP RBMK
		Novovoronezh NPP

18 LARGE NPP UNITS IN **18** YEARS CONNECTED TO THE GRID

MORE THAN **15** LARGE NPP UNITS UNDER CONSTRUCTION:

SNPPs vs. the large NPPs can contribute towards

Fit for Smaller grids or/and remote locations Flexibility of deployment

Modularity

Factory-built -> cost/time control

Less frequent refueling

Smaller emergency planning zones

Series economy vs. economy of scale

The content of this presentation is for discussion purposes only. It does not constitute an offer of services, nor does it impose, or lead to, any obligations on ROSATOM or its affiliates. ROSATOM expressly disclaims responsibility for any errors, inaccuracies or omissions in respect of the information contained herein.

ROSATOM LEADS THE WAY IN SMR DEVELOPMENT SINCE 1954 WE BUILT MORE THAN 20 SMRs

The first nuclear reactor that produced electricity industrially connected to the grid at Obninsk NPP

1954

the world's first nuclear powered surface ship became operational

1974

Bilibino NPP was

connected to the

grid

World's only floating NPP Akademik Lomonosov entered service

2020

First-of-a-kind landbased SNPP to be commissioned in Yakutia region

2028

ROSATOM SMR SOLUTIONS: PORTFOLIO

Land-based Micro NPP

Electrical capacity	10 MW					
Fuel cycle	8-12 years					
Design life	60 years					
Displacement	Ø 8 m x 9 m					
Availability factor	90%					
SHEL	-F-M					

Land-based Small NPP

Electrical capacity	110 MW				
Fuel cycle	up to 6 years				
Design life	60 years				
Displacement	0.12 km2				
Availability factor	90%				
RITM	-200N				

PROOF OF CONCEPT: FIRST FLOATING NUCLEAR POWER PLANT IN THE WORLD

PROOF OF CONCEPT: FIRST FLOATING NUCLEAR POWER PLANT IN THE WORLD

POTENTIAL CONSUMERS OF ELECTRICITY

from Floating Power Units

01 Remote areas02 Ports03 Agglomerations

- 01 Islands02 Archipelagos
- **03** Offshore sites

01 Mining sites
02 Mining and processing sites
03 Large sites under construction

LAND-BASED SNPPs

Flexible, tailor-made SNPP solution based on RITM SMR is designed to address a wide range of customer demands Thermal capacity **380 MW** (2 x 190 MW)

Refueling cycle up to 6 years

Design life 60 years Availability factor 90% Plant area

0.17 km2

Construction period **3 - 4 years**

LAND-BASED SMALL-SCALE NPP LAYOUT

SMALL-SCALE NPP: MODULARITY

MODULAR APPROACH ENABLES PLANT ELECTRICAL CAPACITY EXTENSION BY CONSTRUCTING AN ADDITIONAL MAIN BUILDING AND COOLING TOWERS WITH SHARED USE OF AUXILIARY BUILDINGS

Auxiliary area (shared infrastructure) Main area (secured)

SMALL-SCALE NPP: MODULARITY

01/202204/20232028Power Supply
AgreementSiting license
grantedExpected
commissioning

FIRST OF A KIND NPP with RITM-200N reactor for an industrial client in Yakutia Region, north of Russia

► **55 MWe** ELECTRICAL CAPACITY

Up to 6 years FUEL CYCLE

► 60 years DESIGN LIFE

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

SHELF-M MICROREACTOR FOR A LAND-BASED SMALL-SCALE NPP

Integral PWR TECHNOLOGY

• up to 10 MW ELECTRICAL CAPACITY

• up to 35 MW THERMAL CAPACITY

2024 detailed design to be completed

NIKIET ROSATOM

- Refueling cycle up to 8 years
- Availability factor 80%
- Design life 60 years
- Load-following capabilities 20-100%
- Module weight 320t
- Module dimensions Ø 8 m x 10 m

READY-MADE PROJECTS AND PROJECTS WITH HIGH DEGREE OF READINESS IN RUSSIA

Thank you for your attention