

2022 nuclear Summit Trends in Brazilian Nuclear Market

Overview of Small Modular Reactors – Design and Technology

Chirayu Batra¹

Nuclear Engineer/Project Officer (SMR) Nuclear Power technology Development Section Division of Nuclear Power, Department of Nuclear Energy ¹International Atomic Energy Agency

Contributors: Hadid Subki¹, Yaolei Zou¹, Benoit Lepouze¹, Stefano Monti¹ ¹International Atomic Energy Agency (IAEA)

email: SMR@IAEA.ORG

Drug

Outline

- SMRs
 - Broad Definition
 - Benefits: What do they offer?
 - Technology: How the technology is different/same?
 - Diversified applications: Beyond electricity production
 - Different Designs: brief description and how they are bringing innovation
 - Challenges: path to deployment
 - What's next?: Global Development and deployment Scenario
 - IAEA: What is IAEA doing in this area?

What are SMRs, Benefits, Key Features and Technology...

Nuclear power plants provide flexibility in terms of power and energy market

ABDAN Mini Course SMR, 26 April 2022 Chirayu Batra, IAEA

Image: IAEA

- Small: Smaller land footprint, typically have less than 300 MW(e) power output and have a compact design
- Microreactors are sub-category of SMRs, most designs have less than 10 MW(e) power output and have a niche market

SMR: Modular

- Modular: Modular in *design, construction* and arrangement of power *modules* inside a power plant
- Ability to fabricate major components of the nuclear steam supply system in a factory environment and ship to the point of use
- Reduced on-site preparation
- Substantially reduce the lengthy construction times and risks
- Multi-module as per energy demand

Image: NuScale

SMR: Multi-purpose Applications

• SMRs provide options for wide and versatile applications other than electricity production

Co-generation

• District Heating, industrial process heat, Nuclear Desalination, Hydrogen production, and so forth.

electricity clean water hydrogen heating grid storage vehicles synthetic fuels ammonia metals refining and more

SMRs: Nuclear Power System

A Categorization of SMR Technology

ABDAN Mini Course SMR, 26 April 2022 Chirayu Batra, IAEA

Image: IAEA SMR Booklet

8

Key Attributes of SMRs

Chirayu Batra, IAEA

SMR: Reactor Technology/Types

MOX: mixed-oxide containing any combination of U, Pu and Th oxides ABDAN Mini Course SMR, 26 April 2022 Chirayu Batra, IAEA

SMRs are of major technology-lines, many designs incorporate advanced features

Different SMR Designs, description and innovative features

ARIS: Advanced Reactor Information System

- Most up-to-date information about all available nuclear power plant designs, as well as important development trends
- Design description from evolutionary nuclear plant designs for near term deployment, to innovative reactor concepts still under development
- Information is provided directly by design organizations
- New upgraded and modernized ARIS will be available by the end of this year

ABDAN Mini Course SMR, 26 April 2022 Chirayu Batra, IAEA

	_				-	`	,						
Overview	Genera	I data Nucle	ear Steam Su	pply System	Reactor Coo	lant System	Reactor Core	Core N	laterials	Reactor Press	sure Vessel		
Туре	All	OPWR				OiPWR	⊖ GCR					⊖ FR	
Country	All	🔿 Canada	🔿 China	OEU	⊖ France	🔿 India	🔾 Japan	O Rep.	of Korea	⊖ Russia	OUSA	Other	
Status	All	On Hold	O Unde	r Design	Licensed	⊖ Constru	ction O In	Operation					

 Demonstration Experimental O Prototype

IAEA

(Click on acronym for more information

_					OVERVIEW				
	Acronym 🔺	Full name	Design Org.	Coolant	Moderator	Design Status	Country	Туре	Purpose
	48	super-safe, small and simple	Toshiba Energy Systems & Solutions Corp.	Sodium	No Moderator	Detailed Design	Japan	SFR	Commercial
	ABWR	Advanced Boiling Water Reactor	GE-Hitachi	Light Water	Light Water	In Operation	Japan	BWR	Commerical

IAEA-ARIS SMR Booklet 2020

Advances in Small Modular Reactor Technology Developments

A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2020 Edition

IAEA 2020 SMR Booklet

IAEA SMR Booklet, 2020 Edition					
Number of reactor designs:	72 (16 more than 2018-edition)				
Member states involved:	18 countries				
Reactor types included:	 Water-cooled Land Based – 25 Water-cooled Marine Based – 6 High temperature Gas cooled – 14 Fast Neutron Spectrum – 11 Molten Salt – 10 Microreactors - 6 Test Reactors (HTGR only) 				
Distinguishing features	 Special coverage on fuel cycle approach, waste management/technology Insightful annexes with various charts and tables 				
Status	Published, hardcopies available				
Downloadable version	https://aris.iaea.org/Publications/SMR_Book_2 020.pdf				

1. Introduction

The IAEA 2020 SMR Booklet is a bi-annual publication supplement to the IAEA Advanced Reactor Information System (ARIS) Database. It provides a brief yet comprehensive design description of 72 different reactor designs. The 2020 version is an updated version of the 2018 booklet. It includes 16 more designs and a more comprehensive set of annexes.

Design Development Phases

ABDAN Mini Course SMR, 26 April 2022 Chirayu Batra, IAEA

Design Example 1: Integral-PWR type SMR

Design Example: Integral-PWR type SMR

Integration of major components to be within the reactor pressure vessel:

- Eliminates loop piping and external components, thus making the nuclear island smaller and compact
- ABDAN Mini Course SMR, 26 April 2022 Eliminates the possibility of large break LOCA

Chirayu Batra, IAEA

Design Features offered by iPWR-SMRs

- Enhanced performance engineered safety features:
 - Natural circulation primary flow (adopted by e.g., CAREM, NuScale, SMR-160, and ABV6M designs) → No LOFA
 - Reactivity control
 - Internal CRDM (adopted by e.g., IRIS, mPower, Westinghouse SMR, and CAREM designs)
 - No rod ejection accident
 - Gravity driven secondary shutdown system (adopted by e.g., CAREM, IRIS, Westinghouse SMR designs)
 - Residual heat removal system
 - Passive Residual Heat Removal System (adopted by e.g., CAREM, mPower, Westinghouse SMR)
 - Passive Residual heat removal through SG and HX submerged in water pool (adopted by e.g., IRIS, SMART, NuScale)
 - Safety injection System
 - Passive Injection System (adopted by e.g., CAREM, mPower)
 - Active injection System (adopted by e.g., ACP100, SMART)
 - Flooded containment with recirculation valve

iPWRs: Safety Advantages & Challenges

Advantages	Issues / Challenges
No large piping connected to RPV → No Large-LOCA	Increased numbers of small-bore piping connections to the RPV
Coolant Pumps connected to RPV → Reduced leakage probability	Structural strength of RPV and joints; mechanical vibration; flow stability
Internal Control Rod Drive Mechanism → No CRD ejection accident	In-service inspection approach for in-vessel components
Wide use of Passive Safety Systems → Independence of power source	Passive system has lower driving heads; ADS reliability is critical
Modularization and NSSS components integration \rightarrow compact reactor building	Larger and taller RPV to house NSSS components: steam generators, etc.

Design Example 2: Pebble-bed type HTGRs

- Spherical graphite fuel element with coated particles fuel
- On-line / continuous fuel loading and circulation
- Fuel loaded in cavity formed by graphite to form a pebble bed

Power Range of HTGR-type SMRs

ABDAN Mini Course SMR, 26 April 2022 Chirayu Batra, IAEA

High temperature gas-cooled reactors

20

HTGR-type SMRs (Examples)

Al Cł

HTR-PM (China)	SC-HTGR (France)	GTHTR300 (Japan)	PBMR-400 (South Africa)	Xe-100 (X Energy, United States)
			Primary Helium Blower Hot Gas Duct Vessel Inner pipe as hot gas duct inlet from reactor core Steam Generator Vessel	Control rods Pressure vessel Pebble bed Graphite side reflector Circulators Hot gas duct Helical coil tubes Feed water inlet
<u>Design Status</u> : Achieved first criticality on 13 Sept 2021 in Shidao Bay, planned grid connection by end of 2021	<u>Design Status</u> : Conceptual Design	<u>Design Status</u> : Pre-Licensing; Basic Design Completed	<u>Design Status</u> : Preliminary Design Completed, Test Facilities Demonstration	<u>Design Status</u> : Basic design development . Applied for VDR in July 2020. To submit design certification to the U.S. NRC in 2021 for construction in 20252026
 INET Tsinghua University, China Modular pebble-Bed HTGR 250 MWt / 210 MWe x 2 modules Forced Circulation Core Outlet Temp: 750°C Enrichment: 8.5% Refuel interval: Online refuelling 	 Framatome Inc , United States, France Prismatic-bloc HTGR 625 MWt / 272 MWe per module Forced convection Core Outlet Temp: 750°C Enrichment: <14.5% avg, 18.5% max Refuel interval: ½ core replaced every 18 months 	 JAEA, Japan Prismatic HTGR <600 MWt / 100~300 MWe Core Outlet Temp: 850- 950°C Enrichment: <14% Refuel interval: 48 months Multiple applications 	 PBMR SOC, Ltd, South Africa Pebble-Bed HTGR Forced Circulation 400 MWt / 165 MWe per module Core Outlet Temp: 900°C Enrichment: 9.5% Refuel interval: Online refuelling 	 X Energy, LLC, United States of America Pebble-Bed Modular HTGR Forced Helium Circulation 200 MWt / 82.5 MWe Core Outlet Temp: 750°C Enrichment: 15.5% Refuel interval: Online refuelling

Design Example 3: Heat Pipe Reactors (Micro Reactors)

- Principle
 - Heat pipes are heat transfer devices
 - Utilize thermal conduction and phase transition of a working fluid
 - Two-phase (boiling and condensation) allow large heat transfer with minimal ΔT between heat source and sink
- Benefits
 - Excellent heat transfer rates
 - Completely passive, no power sources, no moving parts (other than fluid)
 - Completely sealed system, no exchange of fluid or interfacing system

Gravitational (thermosyphon or Perkins tube)

Capillary (wicking)

Heat Pipe Reactor

ABDAN Mini Course SMR, 26 April 20 Hexagonal fuel elements with centre heat pipes Chirayu Batra, IAEA

Heat Pipe Reactor: Advantages and Challenges

- Design Advantages
 - Very compact
 - Can operate at high temperatures
 - No positive void coefficient
 - Strong negative temperature feedbacks
 - Reduced corrosion issues
 - Passive heat removal pathways
 - Orientation independent (capillary)
- Design Challenges
 - Working fluids usually have high thermal neutron absorption (which is why they are typically fast reactors)

- Operation Advantages
 - Load following
 - Multiple coolants loops, which eliminates major LOCAs
 - Small coolant inventory
 - Fewer components (no pumps, valves, etc.)
 - Fewer moving parts
- Operation Disadvantages
 - Heat pipe degradation and lifetime
 - Lack of long-term operation data (exposure to
 - radiation, formation of decay products, etc.)
 - Creation of non-condensable gases from activation product decay or chemical processes, which may reduce the effective length of the condenser

Microreactor Designs Six designs included in IAEA SMR Booklet (2020 Edition)

Global Scenario, key aspects and challenges

Global SMR Technology Development

SMR 10-year Deployment Horizon

ABDAN Mini Course SMR, 26 April 2022 Chirayu Batra, IAEA

First 10-year Deployment Horizon

SMRs at a very advanced stage: 1 in operation, 1 in commissioning, 1 in advanced stage of construction, 1 received formal construction approval, 1 received SDA from U.S.NRC

HTR-PM criticality were achieved at the two reactors on 12 Sept. and 10 Nov. 2021, to be connected to the gridby end of 2021

CAREM under construction, to start **operation in 2023**

Dec. 2019, started commercial operation at the end of May 2020

ACP100 has started construction in July 2021 at Changjiang NPP in Hainan province; taking 60 months

NuScale received Standard Design Approval issued by U.S.NRC in Sept. 2020, "will be ready to deliver the first NuScale Power Modules to a client in 2027"

SMRs: key elements for development & deployment

Issues and Actions for Deployments

Demonstration of Safety and Operational Performance FOAK, Novel Designs & Technologies Continuity of Orders, cost competitiveness against alternatives, robust supply chain, and viable financing option

SMR Deployment Competitiveness

Regulatory framework, licensing pathways: global deployment, need for harmonization?

Development of Nuclear Infrastructure for nearterm deployment particularly in Embarking countries

IAEA Activities on SMRs

Agency-wide Platform on SMRs and their Applications

Development and Deployment Status

- ARIS Database - SMR Booklet

Technology Roadmap - Provide Member States with 'model' technology roadmaps for specific SMR projects

> **Economics** - Economic Appraisal of SMR Projects: Methodologies and Applications

Safeguards-by-Design - Incorporate facilitation of safeguards inspection early in ABDA is Course SMR, 26 April 2022

Infrastructure Development - The IAEA Milestones Approach applicable to SMR - Integrated Work Plan for Embarking Countries

Safety - SMR Regulators' Forum - Applicability of the IAEA Safety Standards to SMRs

Generic User Requirements and Criteria - Key policy of Member State on the expectations of its users on SMR technology

Reactor Technology Assessment - Updated Method incorporates SMR

Thank you

Chirayu Batra

Email: Chirayu.Batra@iaea.org

LinkedIn <u>www.linkedin.com/in/chirayubatra</u>

Twitter: @chirayubatra

"I have been driven by the conviction that much more than 1 percent of the energy contained in uranium must be utilized if nuclear power is to achieve its real long-term potential."

- Enrico Fermi